AGC-kinase, C-terminal <p>Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity [<cite idref="PUB00005115"/>]:</p><p> <ul> <li>Serine/threonine-protein kinases</li><li>Tyrosine-protein kinases</li><li>Dual specific protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)</li> </ul> </p><p>Protein kinase function has been evolutionarily conserved from <taxon tax_id="562">Escherichia coli</taxon> to human [<cite idref="PUB00020114"/>]. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation [<cite idref="PUB00015362"/>]. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [<cite idref="PUB00034898"/>], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [<cite idref="PUB00034899"/>].</p><p>The AGC (cAMP-dependent, cGMP-dependent and protein kinase C) protein kinase family embraces a collection of protein kinases that display a high degree of sequence similarity within their respective kinase domains. AGC kinase proteins are characterised by three conserved phosphorylation sites that critically regulate their function. The first one is located in an activation loop in the centre of the kinase domain. The two other phosphorylation sites are located outside the kinase domain in a conserved region on its C-terminal side, the AGC-kinase C-terminal domain. These sites serves as phosphorylation-regulated switches to control both intra- and inter-molecular interactions. Without these priming phosphorylations, the kinases are catalytically inactive [<cite idref="PUB00043770"/>, <cite idref="PUB00043771"/>, <cite idref="PUB00043772"/>].</p><p>Several structures of the AGC-kinase C-terminal domain have been solved. The first phosphorylation site is located in a turn motif, the second one at the end of the domain in an hydrophobic pocket. In PKB the phosphorylated hydrophobic motif engages a hydrophobic groove within the N-lobe of the kinase domain which orders alpha helices close to the active site [<cite idref="PUB00022308"/>].</p>